C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT3 Branch: B.Tech (All)

Semester: 2 Date: 25/04/2018 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) The infinite series $1+r+r^2+....+r^{n-1}+...$ is convergent if (A) |r|<1 (B) |r|>1 (C) r=1 (D) r<-1
- **b)** The sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is
 - (A) $\log 2$ (B) zero (C) infinite (D) none of these
- c) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^7 x \, dx$ is

(A)
$$\frac{32\pi}{35}$$
 (B) $\frac{32}{35}$ (C) zero (D) $\frac{16}{35}$

d) If $f_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$, then $(f_n + f_{n-2})$ is equal to _____.

(A)
$$\frac{1}{n}$$
 (B) $\frac{1}{n-1}$ (C) $\frac{n}{n-1}$ (D) $\frac{n-1}{n}$

- e) $\int_{1}^{\infty} \frac{1}{x^{\sqrt{2}}} dx$ is convergent.
 - (A) True (B) False
- $\mathbf{f}) \qquad \boxed{n} \boxed{n-1} = \underline{\hspace{1cm}}$
 - (A) $\frac{\pi}{\cos n\pi}$ (B) $\frac{\pi}{\sec n\pi}$ (C) $\frac{\pi}{\cos ecn\pi}$ (D) $\frac{\pi}{\sin n\pi}$
- g) If $B(x,2) = \frac{1}{3}$, then the value of $x = \underline{\hspace{1cm}}$.
 - (A) 0 (B) 1 (C) 2 (D) none of these
- h) If the power of y are even, then the curve is symmetrical about (A) X-axis (B) Y-axis (C) about both X and Y axes (D) none of these

i)
$$\int_{0}^{1} dx \int_{0}^{x} e^{\frac{y}{x}} dy \text{ is equal to}$$

(A)
$$e+1$$
 (B) $e-1$ (C) $\frac{1}{2}(e+1)$ (D) $\frac{1}{2}(e-1)$

j) On converting into polar coordinates
$$\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} dx \ dy$$
 is equal to

(A)
$$\int_{0}^{\pi} \int_{0}^{2a\cos\theta} r \, dr \, d\theta$$
 (B)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\cos\theta} r \, dr \, d\theta$$
 (C)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2a\sin\theta} r \, dr \, d\theta$$
 (D) none of these

k) The transformations
$$x + y = u$$
, $y = uv$ transform the area element $dy dx$ into $|J| du dv$, where $|J|$ is equal to

(A) 1 (B)
$$u$$
 (C) – 1 (D) none of these

1) The degree of the differential equation
$$3\frac{d^2y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}$$
 is

m) The solution of
$$\frac{dy}{dx} = e^{x+y}$$
 is

(A)
$$e^x - e^{-y} = c$$
 (B) $e^x - e^y = c$ (C) $e^x + e^{-y} = c$ (D) $e^x + e^y = c$

n) The orthogonal trajectories of the family of curve
$$y = cx^k$$
 are given by

(A)
$$x^2 + ky^2 = \text{const.}$$
 (B) $x^2 + cy^2 = \text{const.}$ (C) $kx^2 + y^2 = \text{const.}$

(D)
$$x^2 - ky^2 = \text{const.}$$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Test the convergence of the series
$$\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \dots$$
 (5)

b) Using reduction formula evaluate:
$$\int_{0}^{1} x^{6} \sin^{-1} x \, dx$$
 (5)

c) Prove that
$$\int_{0}^{\infty} \frac{x^4 \left(1 + x^5\right)}{\left(1 + x\right)^{15}} dx = \frac{1}{5005}.$$
 (4)

Q-3 Attempt all questions

a) Prove that
$$\int_{0}^{1} x^{q-1} \left(\log \frac{1}{x} \right)^{p-1} dx = \frac{\sqrt{p}}{q^{p}}$$
. (5)

b) Using reduction formula prove that
$$\int_{0}^{a} x^{5} \left(2a^{2} - x^{2}\right)^{-3} dx = \frac{1}{2} \left(\log 2 - \frac{1}{2}\right).$$
 (5)

c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^2 + 1}$$
 (4)

Q-4 Attempt all questions (14)

(14)

(14)

- Change the order of integration in the integral $\int_{-\infty}^{\infty} \frac{e^{-y}}{v} dy dx$ and evaluate it. **(5)**
- Examine the series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$ for convergence using ratio **(5)**

c) Solve:
$$(y^2 e^{xy^2} + 4x^3) dx + (2xy e^{xy^2} - 3y^2) dy = 0$$
 (4)

Q-5 Attempt all questions

- Solve: $\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$ **(5)**
- By changing into polar co-ordinates, evaluate the integral **(5)** $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} \left(x^2 + y^2\right) \, dx \, dy .$
- Using reduction formula, evaluate: $\int_{0}^{\infty} \frac{x^4}{(1+x^2)^4} dx$ **(4)**

Q-6 Attempt all questions

- Evaluate: $\int_{0}^{\infty} x^4 e^{-x^4} dx$ **(5)**
- Solve: $xdy ydx = \sqrt{x^2 + y^2} dx$ **(5)**
- c) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}$ **(4)**

Q-7Attempt all questions

- Trace the curve $r^2 = a^2 \cos 2\theta$. **(5)**
- Evaluate: $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)} dx$ **(5)**
- Find the length of the arc of the curve $y = \log \sec x$ from x = 0 to $x = \frac{\pi}{3}$. **(4)**

Q-8 Attempt all questions

- (14)Show that the volume of the spindle-shaped solid generated by revolving the **(5) a**) astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x-axis is $\frac{32\pi a^3}{105}$.
- Trace the curve $y^2(2a-x)=x^3$. b) **(5)**
- Investigate the convergence of $\int_{2}^{5} \frac{1}{\sqrt{(x-2)}} dx$. **(4)**

(14)

(14)

(14)